SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code: LDICA (19EC0409)

Course & Branch: B.Tech – ECE

Year &Sem: II-B.Tech & II-Sem

UNIT –I

OP AMP CHARACTERISTICS AND LINEAR APPLICATIONS

1	a)	Explain the operation of an Instrumentation amplifier with neat sketch.	[L2][CO2]	[8M]
	b)	Discuss about Virtual ground.	[L3][CO1]	[4M]
2	a)	Discuss about DC and AC characteristics of an ideal OP-AMP with relevant	[L2][CO1]	[6M]
		expressions.		
	b)	Differentiate Open-Loop & Closed Loop Op Amp Configurations.	[L3][CO1]	[6M]
3		Draw the circuit and explain the working of the following.		
	a)	Voltage to current converter.	[L3][CO2]	[6M]
	b)	Current to voltage converter.	[L3][CO2]	[6M]
4	a)	Describe about the block diagram of Op-Amp.	[L1][CO1]	[8M]
	b)	Write the features of 741 op-amp.	[L3][CO1]	[4M]
5	a)	Illustrate the Ideal Differential Amplifier with Differential mode gain and	[L3][CO1]	[8M]
		Common mode gain expressions.		
	b)	Define and explain about Common Mode Rejection Ratio.	[L1][CO1]	[4M]
6	a)	Analyze the expression of Inverting Amplifier and draw its input and output	[L4][CO1]	[8M]
		Wave forms.		
	b)	List out the applications of Comparator.	[L1][CO2]	[4M]
7		Draw and analyze the expressions of the following.		
	a)	Differentiator.	[L4][CO2]	[6M]
	b)	Integrator.	[L4][CO2]	[6M]
8		Explain about the following.		
	a)	Inverting A.C Amplifier.	[L2][CO2]	[6M]
	b)	Non-Inverting A.C Amplifier.	[L2][CO2]	[6M]
9	a)	Explain about the operation of sample and hold circuit with relevant	[L2][CO2]	[6M]
		Waveforms.		
	b)	Discuss about Schmitt trigger with neat sketches.	[L3][CO2]	[6M]
10		Explain the followings with neat sketch.		
	a)	Inverting Mode comparator.	[L3][CO2]	[6M]
	b)	Non-Inverting Mode Comparator.	[L3][CO2]	[6M]

Regulation: R19

UNIT –II ACTIVE FILTERS, OSCILLATORS & TIMERS

1	a)	Explain the operation of Astable multivibrator using 555 timer and also	[L2][CO2]	[8M]
	-	derive the expression for frequency of oscillation.		
	b)	Write the application of multivibrator.	[L1][CO2]	[4M]
2	a)	With the help of schematic diagram explain how 555 timer can be used as	[L2][CO2]	[8M]
		Monostable multivibrator.		
	b)	Draw the pin diagram of 555 timer.	[L1][CO2]	[4M]
3	a)	Design Wien bridge oscillator using op-amp and explain its operation.	[L4][CO2]	[8M]
	b)	Define Oscillator and List out the types of the oscillators.	[L1][CO2]	[4M]
4	a)	What is the principle operation of RC phase shift oscillator? Explain its	[L2][CO2]	[8M]
		operation.		
	b)	What are the disadvantages of RC phase shift oscillator.	[L1][CO2]	[4M]
5	a)	Draw the circuit of a 1 st order low pass Butterworth filter and discuss its	[L2][CO1]	[8M]
		transfer functions.		
	b)	Compare the low pass and high pass filters.	[L1][CO1]	[4M]
6	a)	Explain the functional block diagram of 555 timers.	[L2][CO2]	[8M]
	b)	Draw the frequency response curve for a band-pass filter.	[L1][CO1]	[4M]
7	a)	Design the first order high pass filter and discuss its frequency responses.	[L2][CO1]	[8M]
	b)	Define Filter and Illustrate the Types of filters.	[L1][CO1]	[4M]
8	a)	Draw and Explain narrow band pass filter and discuss its frequency	[L2][CO1]	[8M]
		responses.		
	b)	Design wide band pass filter.	[L2][CO1]	[4M]
9	a)	Draw the circuit diagram of the wide Band-Reject Filter and explain its	[L2][CO1]	[8M]
		operation.		
	b)	Compare Band pass and Band-Reject Filter.	[L2][CO1]	[4M]
10	a)	Discuss about All pass filter with neat sketch.	[L2][CO1]	[8M]
	b)	Write the equations of narrow Band-Reject Filter.	[L2][CO1]	[4M]

UNIT –III PHASE LOCKED LOOPS, CONVERTERS & CMOS LOGIC

1	a)	Draw and Explain about the block schematics of PLL.	[L2][CO3]	[8M]
	b)	Define PLL and List the applications of PLL.	[L3][CO2]	[4M]
2	a)	Draw and Explain about the Monolithic IC 565.	[L2][CO3]	[6M]
	b)	Draw and Explain about the Basic IC Voltage Regulators.	[L2][CO3]	[6M]
3	a)	Draw and explain the weighted resistor DAC.	[L1][CO3]	[6M]
	b)	Explain about ladder type DAC.	[L1][CO3]	[6M]
4		Draw and explain about R-2R DAC with an example.	[L1][CO3]	[12M]
5		Explain about counter type ADC with neat block diagram.	[L2][CO3]	[12M]
6	a)	The basic step of a 9-bit DAC is 10.3 mV. If "000000000" represents 0V.	[L1][CO3]	[6M]
		What output is produced if the input is "101101111"?		
	b)	Explain about flash type ADC.	[L2][CO3]	[6M]
7		Draw and explain successive approximation type ADC with an	[L1][CO3]	[12M]
		Example.		
8		Draw the circuit diagram of Dual Slope ADC and explain its working with	[L1][CO3]	[12M]
		neat sketches.		
9	a)	Draw the circuit diagram of basic CMOS gate and explain its operation.	[L3][CO5]	[6M]
	b)	Compare CMOS, TTL and ECL logic families.	[L5][CO5]	[6M]
10	a)	Discuss about low voltage CMOS and Interfacing.	[L2][CO5]	[6M]
	b)	Explain in detail about basic ECL logic circuit.	[L2][CO5]	[6M]

UNIT –IV HARDWARE DESCRIPTION LANGUAGES

1	a)	Explain the various data types supported by VHDL. Give the necessary	[L2][CO6]	[6M]
		examples.		
	b)	Explain about VHDL program structure.	[L2][CO6]	[6M]
2	a)	Explain about functions and procedures with an example.	[L2][CO6]	[6M]
	b)	Explain about libraries and packages.	[L2][CO6]	[6M]
3	a)	Discuss about behavioral design element with an example.	[L4][CO6]	[6M]
	b)	Design the logic circuit and write a data-flow style VHDL program for the	[L6][CO6]	[6M]
		following function. F (P) = ΣA , B, C, D (1,5,6,7,9,13) + d (4,15).		
4		Draw and explain in detail about VHDL design flow.	[L3][CO6]	[12M]
5	a)	Write about structural design elements with an example.	[L2][CO6]	[6M]
	b)	Write a VHDL entity and Architecture for the following function.	[L2][CO6]	[6M]
		F(x) = (a + b) (c.d) Also draw the relevant logic diagram.		
6		Design the logic circuit and write VHDL program for the following function.	[L6][CO6]	[12M]
		$F(X) = \Sigma A, B, C, D (0, 2, 5, 7, 8, 10, 13, 15) + d (1, 6, 11).$		
7		Design the logic circuit and write VHDL program for the following function.	[L6][CO6]	[12M]
		$F(Y) = \Pi A, B, C, D (1, 4, 5, 7, 9, 11, 12, 13, 15).$		
8		Design a logic circuit for 4-bit parallel adder and write the VHDL code in	[L6][CO6]	[12M]
		structural style by considering full adder as a component.		
9		Explain in detail different modeling styles of VHDL with suitable examples.	[L2][CO6]	[12M]
10	a)	What is the importance of time dimension in VHDL and explain.	[L2][CO6]	[6M]
	b)	Explain the behavioral design elements of VHDL.	[L2][CO6]	[6M]

UNIT –V

COMBINATIONAL & SEQUENTIAL LOGIC DESIGN PRACTICES

1	a)	Design a 4 to 16 decoder with 74×138 IC's.	[L6][CO7]	[6M]
	b)	Write a VHDL program for the above design.	[L2][CO7]	[6M]
2	a)	Design a Full adder with Half adder's logic circuit.	[L6][CO7]	[6M]
	b)	Write VHDL code for the above design in structural model.	[L2][CO7]	[6M]
3	a)	Explain the operation of standard IC for 3X8 decoder with necessary truth	[L2][CO7]	[6M]
		table and internal architecture.		
	b)	Write a VHDL code for the above Decoder	[L2][CO7]	[6M]
4	a)	With the help of logic diagram explain 74×157 multiplexer.	[L2][CO7]	[6M]
	b)	Write a VHDL code for the above IC in data flow style.	[L2][CO7]	[6M]
5		Design a priority encoder that can handle 32 requests. Use 74×148 and	[L6][CO7]	[12M]
		required discrete gates. Provide the truth table and explain the operation.		
6	a)	Draw the logic symbol of 74 x 85, 4-bit comparator and write a VHDL code	[L3][CO7]	[6M]
		for it.		
	b)	Design a 16-bit comparator using 74×85 ICs.	[L6][CO7]	[6M]
7	a)	Distinguish between the synchronous and asynchronous counters.	[L4][CO7]	[6M]
	b)	Design an 8-bit serial in and parallel out shift register.	[L6][CO7]	[6M]
Q		Distinguish between lateb and flip flop. Show the logic diagram for both		
o	<i>a)</i>	Explain the operation with the help of function table		
	b)	Write a VIIDL and for a D flip flop in behavioral model		[6]
0	(U) (U	White a VHDL code for a D-flip hop in benavioral model.		
9	<u>a)</u>	Design a synchronous 4-bit up counter.		
	b)	Write a VHDL code for the above design.	[L2][CO7]	[6M]
10		Design an 8 -bit serial in and serial out shift register and write a VHDL cod	[L6][CO5]	[12M]
		for it.		

Prepared by:

- 1. Mrs. J JHANSI
- 2. Mr. U SRINIVASULU
- 3. Mr K D MOHANA SUNDARAM

Associate Professor/ECE

Associate Professor/ECE

Associate Professor/ECE